• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comprehensive review of the deep learning-based tumor analysis approaches in histopathological images: segmentation, classification and multi-learning tasks

    Thumbnail
    Date
    2023-01-01
    Author
    Abdel-Nabi, Heba
    Ali, Mostafa
    Awajan, Arafat
    Daoud, Mohammad
    Alazrai, Rami
    Suganthan, Ponnuthurai N.
    Ali, Talal
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Medical Imaging has become a vital technique that has been embraced in the diagnosis and treatment process of cancer. Histopathological slides, which microscopically examine the suspicious tissue, are considered the golden standard for tumor prognosis and diagnosis. This excellent performance caused a sudden and growing interest in digitizing these slides to generate Whole Slide Images (WSI). However, analyzing WSI is a very challenging task due to the multiple-resolution, large-scale nature of these images. Therefore, WSI-based Computer-Aided Diagnosis (CAD) analysis gains increasing attention as a secondary decision support tool to enhance healthcare by alleviating pathologists’ workload and reducing misdiagnosis rates. Recent revolutionized deep learning techniques are promising and have the potential to achieve efficient automatic representation of WSI features in a data-driven manner. Thus, in this survey, we focus mainly on deep learning-based CAD systems in the context of tumor analysis in histopathological images, i.e., segmentation and classification of tumor regions. We present a visual taxonomy of deep learning approaches that provides a systematic structure to the vast number of diverse models proposed until now. We sought to identify challenges that face the automation of histopathological analysis, the commonly used public datasets, and evaluation metrics and discuss recent methodologies for addressing them through a systematic examination of presented deep solutions. The survey aims to highlight the existing gaps and limitations of the recent deep learning-based WSI approaches to explore the possible avenues for potential enhancements.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85145950627&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s10586-022-03951-2
    http://hdl.handle.net/10576/39801
    Collections
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video