عرض بسيط للتسجيلة

المؤلفDu, Liang
المؤلفGao, Ruobin
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفWang, David Z.W.
تاريخ الإتاحة2023-02-08T09:16:35Z
تاريخ النشر2022-12-01
اسم المنشورApplied Soft Computing
المعرّفhttp://dx.doi.org/10.1016/j.asoc.2022.109809
الاقتباسDu, L., Gao, R., Suganthan, P. N., & Wang, D. Z. (2022). Graph ensemble deep random vector functional link network for traffic forecasting. Applied Soft Computing, 131, 109809.‏
الرقم المعياري الدولي للكتاب15684946
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144406014&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/39805
الملخصTraffic forecasting is crucial to achieving a smart city as it facilitates public transportation management, autonomous driving, and the resource relocation of the sharing economy. Traffic forecasting belongs to the challenging spatiotemporal forecasting task, which is highly demanding because of the complicated geospatial correlation between traffic nodes, inconsistent and highly non-linear temporal patterns due to various events, and sporadic traffic accidents. Previous graph neural network (GNN) models built for transportation forecasting feature the sophisticated structure and heavy computation cost as they combine the deep neural network and graph machine learning to capture the spatiotemporal dynamics for the whole transportation network. However, it may be more practical for practitioners to perform node-wise forecasting for specific nodes of interest rather than network-wise forecasting. To mitigate the gaps mentioned above, we propose a novel graph ensemble deep random vector functional link network (GEdRVFL) to forecast the future traffic volume by combining the well-performing ensemble deep random vector functional link (EdRVFL) with the graph convolution layer for a specific node and realize the node-wise traffic forecasting. After a comprehensive comparison with the state-of-the-art models, our model beats the others in four out of five cases measured by mean absolute scaled error.
اللغةen
الموضوعEnsemble deep random vector functional link
Ensemble learning
Feature selection
Spatiotemporal forecasting
Traffic forecasting
العنوانGraph ensemble deep random vector functional link network for traffic forecasting
النوعArticle
رقم المجلد131
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة