Malicious uav detection using integrated audio and visual features for public safety applications
المؤلف | Jamil, Sonain |
المؤلف | Fawad |
المؤلف | Rahman, MuhibUr |
المؤلف | Ullah, Amin |
المؤلف | Badnava, Salman |
المؤلف | Forsat, Masoud |
المؤلف | Mirjavadi, Seyed S. |
تاريخ الإتاحة | 2023-02-12T06:20:51Z |
تاريخ النشر | 2020 |
اسم المنشور | Sensors (Switzerland) |
المصدر | Scopus |
الملخص | Unmanned aerial vehicles (UAVs) have become popular in surveillance, security, and remote monitoring. However, they also pose serious security threats to public privacy. The timely detection of a malicious drone is currently an open research issue for security provisioning companies. Recently, the problem has been addressed by a plethora of schemes. However, each plan has a limitation, such as extreme weather conditions and huge dataset requirements. In this paper, we propose a novel framework consisting of the hybrid handcrafted and deep feature to detect and localize malicious drones from their sound and image information. The respective datasets include sounds and occluded images of birds, airplanes, and thunderstorms, with variations in resolution and illumination. Various kernels of the support vector machine (SVM) are applied to classify the features. Experimental results validate the improved performance of the proposed scheme compared to other related methods. |
راعي المشروع | The publication of this article was funded by the Qatar National Library. Seyed Sajad Mirjavadi also appreciates the help from the Fidar Project Qaem Company (FPQ). |
اللغة | en |
الناشر | MDPI AG |
الموضوع | AlexNet Feature extraction Localization Malicious drones Public safety Surveillance |
النوع | Article |
الصفحات | 16-Jan |
رقم العدد | 14 |
رقم المجلد | 20 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]
-
الهندسة الميكانيكية والصناعية [1396 items ]