عرض بسيط للتسجيلة

المؤلفLi, Ruilin
المؤلفWang, Lipo
المؤلفSuganthan, P. N.
المؤلفSourina, Olga
تاريخ الإتاحة2023-02-15T06:30:06Z
تاريخ النشر2022-10-01
اسم المنشورIEEE Journal of Biomedical and Health Informatics
المعرّفhttp://dx.doi.org/10.1109/JBHI.2022.3185587
الاقتباسLi, R., Wang, L., Suganthan, P. N., & Sourina, O. (2022). Sample-Based Data Augmentation Based on Electroencephalogram Intrinsic Characteristics. IEEE Journal of Biomedical and Health Informatics, 26(10), 4996-5003.‏
الرقم المعياري الدولي للكتاب21682194
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133812493&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/40052
الملخصDeep learning for electroencephalogram-based classification is confronted with data scarcity, due to the time-consuming and expensive data collection procedure. Data augmentation has been shown as an effective way to improve data efficiency. In addition, contrastive learning has recently been shown to hold great promise in learning effective representations without human supervision, which has the potential to improve the electroencephalogram-based recognition performance with limited labeled data. However, heavy data augmentation is a key ingredient of contrastive learning. In view of the limited number of sample-based data augmentation in electroencephalogram processing, three methods, performance-measure-based time warp, frequency noise addition and frequency masking, are proposed based on the characteristics of electroencephalogram signal. These methods are parameter learning free, easy to implement, and can be applied to individual samples. In the experiment, the proposed data augmentation methods are evaluated on three electroencephalogram-based classification tasks, including situation awareness recognition, motor imagery classification and brain-computer interface steady-state visually evoked potentials speller system. Results demonstrated that the convolutional models trained with the proposed data augmentation methods yielded significantly improved performance over baselines. In overall, this work provides more potential methods to cope with the problem of limited data and boost the classification performance in electroencephalogram processing.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعData augmentation
electroencephalo- gram
motor imagery
situation awareness
SSVEP
العنوانSample-Based Data Augmentation Based on Electroencephalogram Intrinsic Characteristics
النوعArticle
الصفحات4996-5003
رقم العدد10
رقم المجلد26
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة