عرض بسيط للتسجيلة

المؤلفRanasinghe, N.
المؤلفRamanan, A.
المؤلفFernando, S.
المؤلفHameed, P. N.
المؤلفHerath, D.
المؤلفMalepathirana, T.
المؤلفSuganthan, P.
المؤلفNiranjan, M.
المؤلفHalgamuge, S.
تاريخ الإتاحة2023-02-15T07:05:45Z
تاريخ النشر2022-01-01
اسم المنشورJournal of the National Science Foundation of Sri Lanka
المعرّفhttp://dx.doi.org/10.4038/jnsfsr.v50i0.11249
الاقتباسRanasinghe, N., Ramanan, A., Fernando, S., Hameed, P. N., Herath, D., Malepathirana, T., ... & Halgamuge, S. (2022). Interpretability and accessibility of machine learning in selected food processing, agriculture and health applications. arXiv preprint arXiv:2211.16699.‏
الرقم المعياري الدولي للكتاب13914588
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142728547&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/40054
الملخصArtificial Intelligence (Al) and its data-centric branch of machine learning (ML) have greatly evolved over the last few decades. However, as Al is used increasingly in real world use cases, the importance of the interpretability of and accessibility to Al systems have become major research areas. The lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms. This is due to many reasons including ethical and regulatory concerns, which have resulted in poorer adoption of ML in some areas. The recent past has seen a surge in research on interpretable ML. Generally, designing a ML system requires good domain understanding combined with expert knowledge. New techniques are emerging to improve ML accessibility through automated model design. This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems while also being relevant to developing countries. We review work under multiple levels of interpretability including scientific and mathematical interpretation, statistical interpretation and partial semantic interpretation. This review includes applications in three areas, namely food processing, agriculture and health.
اللغةen
الناشرNational Science Foundation
الموضوعDisease detection in agriculture
drug repositioning
food processing
interpretation of neural networks
metagenomics
العنوانInterpretability and accessibility of machine learning in selected food processing, agriculture and health applications
النوعArticle Review
الصفحات263-276
رقم العددSpecial Issue
رقم المجلد50
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة