• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0952197622006881-main.pdf (5.871Mb)
    Date
    2023
    Author
    Himeur, Yassine
    Al-Maadeed, Somaya
    Kheddar, Hamza
    Al-Maadeed, Noor
    Abualsaud, Khalid
    Mohamed, Amr
    Khattab, Tamer
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Recently, developing automated video surveillance systems (VSSs) has become crucial to ensure the security and safety of the population, especially during events involving large crowds, such as sporting events. While artificial intelligence (AI) smooths the path of computers to think like humans, machine learning (ML) and deep learning (DL) pave the way more, even by adding training and learning components. DL algorithms require data labeling and high-performance computers to effectively analyze and understand surveillance data recorded from fixed or mobile cameras installed in indoor or outdoor environments. However, they might not perform as expected, take much time in training, or not have enough input data to generalize well. To that end, deep transfer learning (DTL) and deep domain adaptation (DDA) have recently been proposed as promising solutions to alleviate these issues. Typically, they can (i) ease the training process, (ii) improve the generalizability of ML and DL models, and (iii) overcome data scarcity problems by transferring knowledge from one domain to another or from one task to another. Although the increasing number of articles proposed to develop DTL- and DDA-based VSSs, a thorough review that summarizes and criticizes the state-of-the-art is still missing. To that end, this paper introduces, to the best of the authors' knowledge, the first overview of existing DTL- and DDA-based video surveillance to (i) shed light on their benefits, (ii) discuss their challenges, and (iii) highlight their future perspectives.
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2022.105698
    http://hdl.handle.net/10576/40341
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video