On the protection of power system: Transmission line fault analysis based on an optimal machine learning approach
View/ Open
Publisher version (Check access options)
Check access options
Date
2022Author
Uddin, Md. SihabHossain, Md. Zahid
Fahim, Shahriar Rahman
Sarker, Subrata K.
Bhuiyan, Erphan Ahmmad
Muyeen, S.M.
Das, Sajal K.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Transmission lines (TLs) of power networks are often encountered with a number of faults. To continue normal operation and reduce the damage due to the TL faults, it is a must to identify and classify faults as early as possible. In this paper, the design and development of an intelligent machine learning framework is presented to identify and classify faults in a power TL. The design of the proposed framework is done with the goal of reducing computational load and ensuring resilience against source noise, source impedance, fault strength, and sampling frequency variation. The design is carried out based on the selection of the optimal model parameters using a search optimization algorithm called GridSearchCV. The effectiveness of the proposed model is verified by testing the model on the IEC standard microgrid model in a MATLAB environment. The results show that the proposed model has more than ninety-nine per cent overall accuracy in the identification and classification of the TL faults. The results are also compared with some state-of-the-art approaches such as LSTM, RNN, DBN, DRL, and CNF to further examine the performance of the proposed framework. The comparison demonstrates that the proposed model outperforms other existing techniques in terms of accuracy, computational cost, and response speed. 2022 The Authors
Collections
- Electrical Engineering [2649 items ]