Show simple item record

AuthorSekaran, Karthik
AuthorAlsamman, Alsamman M.
AuthorGeorge Priya Doss, C.
AuthorZayed, Hatem
Available date2023-03-27T10:13:01Z
Publication Date2023-01-01
Publication NameMetabolic Brain Disease
Identifierhttp://dx.doi.org/10.1007/s11011-023-01171-0
CitationSekaran, K., Alsamman, A.M., George Priya Doss, C. et al. Bioinformatics investigation on blood-based gene expressions of Alzheimer's disease revealed ORAI2 gene biomarker susceptibility: An explainable artificial intelligence-based approach. Metab Brain Dis (2023). https://doi.org/10.1007/s11011-023-01171-0
ISSN08857490
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85148448826&origin=inward
URIhttp://hdl.handle.net/10576/41350
AbstractThe progressive, chronic nature of Alzheimer's disease (AD), a form of dementia, defaces the adulthood of elderly individuals. The pathogenesis of the condition is primarily unascertained, turning the treatment efficacy more arduous. Therefore, understanding the genetic etiology of AD is essential to identifying targeted therapeutics. This study aimed to use machine-learning techniques of expressed genes in patients with AD to identify potential biomarkers that can be used for future therapy. The dataset is accessed from the Gene Expression Omnibus (GEO) database (Accession Number: GSE36980). The subgroups (AD blood samples from frontal, hippocampal, and temporal regions) are individually investigated against non-AD models. Prioritized gene cluster analyses are conducted with the STRING database. The candidate gene biomarkers were trained with various supervised machine-learning (ML) classification algorithms. The interpretation of the model prediction is perpetrated with explainable artificial intelligence (AI) techniques. This experiment revealed 34, 60, and 28 genes as target biomarkers of AD mapped from the frontal, hippocampal, and temporal regions. It is identified ORAI2 as a shared biomarker in all three areas strongly associated with AD's progression. The pathway analysis showed that STIM1 and TRPC3 are strongly associated with ORAI2. We found three hub genes, TPI1, STIM1, and TRPC3, in the network of the ORAI2 gene that might be involved in the molecular pathogenesis of AD. Naive Bayes classified the samples of different groups by fivefold cross-validation with 100% accuracy. AI and ML are promising tools in identifying disease-associated genes that will advance the field of targeted therapeutics against genetic diseases.
SponsorOpen Access funding provided by the Qatar National Library.
Languageen
PublisherSpringer
SubjectAlzheimer's
Artificial Intelligence
Biomarkers
Genetic Algorithm
Machine Learning
ORAI2
STIM2
TitleBioinformatics investigation on blood-based gene expressions of Alzheimer's disease revealed ORAI2 gene biomarker susceptibility: An explainable artificial intelligence-based approach
TypeArticle
ESSN1573-7365
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record