Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation
Date
2023-04-30Author
Iram, ShahzadiIslam, Muhammad
Saeed, Hamid
Shahzadi, Anum
Haider, Junaid
Haider, Ali
Imran, Muhammad
Rathore, Hassaan Anwer
Ul-Hamid, Anwar
Nabgan, Walid
Ikram, Muhammad
...show more authors ...show less authors
Metadata
Show full item recordAbstract
The combination treatment is considered an approach to attaining synergistic impact while minimizing applied dosage. Hydrogels are analogous to the tissue environment attributed to hydrophilic and porous structure. Despite extensive study in biological and biotechnological domains, their restricted mechanical strength and limited functionalities impede their potential uses. Emerging strategies are centred on research and developing nanocomposite hydrogels to combat these issues. Herein, we prepared copolymerized hydrogel by grafting poly-acrylic acid P(AA) onto cellulose nanocrystals (CNC) and adding CNC-g-PAA as dopant (2 and 4 wt%) in calcium oxide (CaO) nanoparticles to generate an effective hydrogel doped nanocomposite (NCH) (CNC-g-PAA/CaO) for biomedical applications such as anti-arthritic, anti-cancer, and antibacterial investigations alongside their comprehensive characterization. CNC-g-PAA/CaO (4 %), compared to other samples, had a substantially higher antioxidant potential (72.21 %). Doxorubicin, a potential chemotherapeutic drug, was then effectively loaded into NCH (99 %) via electrostatic interaction, and pH-triggered based release was found to be >57.9 % in 24 h. Furthermore, molecular docking investigation against targeted protein Cyclin-dependent kinase 2 and in vitro cytotoxicity study verified the improved antitumor effectiveness of CNC-g-PAA and CNC-g-PAA/CaO. These outcomes indicated that hydrogels might serve as potential delivery vehicles for innovative multifunctional biomedical applications.
Collections
- Pharmacy Research [1314 items ]