عرض بسيط للتسجيلة

المؤلفBakhtiaridoust, M.
المؤلفYadegar, Meysam
المؤلفMeskin, Nader
تاريخ الإتاحة2023-03-29T11:31:39Z
تاريخ النشر2023-03-01
اسم المنشورISA Transactions
المعرّفhttp://dx.doi.org/10.1016/j.isatra.2022.08.030
الاقتباسBakhtiaridoust, M., Yadegar, M., & Meskin, N. (2022). Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator. ISA transactions.‏
الرقم المعياري الدولي للكتاب00190578
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138581960&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41427
الملخصThis paper proposes a data-driven actuator fault detection and isolation approach for the general class of nonlinear systems. The proposed method uses a deep neural network architecture to obtain an invariant set of basis functions for the Koopman operator to form a linear Koopman predictor for a nonlinear system. Then, the obtained linear model is used for fault detection and isolation purposes without relying on prior knowledge about the underlying dynamics. Moreover, a recursive method is proposed for fault detection and isolation that is entirely data-driven with the key feature of global validity for the system's whole operating region due to the Koopman operator's global characteristic. Finally, the approach's efficacy is demonstrated using two simulations on a coupled nonlinear system and a two-link manipulator benchmark.
اللغةen
الناشرISA - Instrumentation, Systems, and Automation Society
الموضوعData-driven
Deep learning
Dynamic mode decomposition
Fault detection and isolation
Koopman operator
Model-free
Neural network
Recursive fault detection
العنوانData-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
النوعArticle
رقم المجلد134
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة