عرض بسيط للتسجيلة

المؤلفMuhammad, Usman
المؤلفMonfort, Olivier
المؤلفGowrisankaran, Sridhar
المؤلفHameed, Bassim H.
المؤلفHanna, Khalil
المؤلفAl-Abri, Mohammed
تاريخ الإتاحة2023-03-30T06:38:37Z
تاريخ النشر2023-02-11
اسم المنشورJournal of Water Process Engineering
المعرّفhttp://dx.doi.org/10.1016/j.jwpe.2023.103566
الاقتباسUsman, M., Monfort, O., Gowrisankaran, S., Hameed, B. H., Hanna, K., & Al-Abri, M. (2023). Dual functional materials capable of integrating adsorption and Fenton-based oxidation processes for highly efficient removal of pharmaceutical contaminants. Journal of Water Process Engineering, 52, 103566.
الرقم المعياري الدولي للكتاب22147144
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2214714423000831
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41492
الملخصPharmaceutical contaminants have shown widespread presence in water/wastewater threatening environmental and human health. Existing literature shows that adsorption can efficiently bind pharmaceuticals preventing their transfer into the treated water. However, adsorption only diverts these contaminants from one phase to another requiring the treatment of contaminant-laden adsorbents. Fenton oxidation (H2O2-based) has shown good potential for the degradation of pharmaceuticals. But, the practical use of Fenton oxidation is often limited by its higher chemical demands and low contact of oxidizing species with target contaminants. Efforts to overcome these practical obstacles aim to develop efficient heterogeneous catalysts which also benefit from their strong contaminant adsorption capacity. This is the first review that focuses exclusively on dual-functional materials that can effectively adsorb pharmaceutical pollutants (separation-based removal) and promote Fenton oxidation simultaneously (degradation-based removal) in aqueous systems. The dual functionality enables the integration of adsorption and Fenton-based processes (heterogeneous Fenton, photo-Fenton and photocatalysis) to efficiently remove pharmaceuticals. This integration can be achieved using a single material having both functions or by compositing/impregnating different materials. The properties of these materials have important consequences on their treatment efficiency, stability, and regeneration ability. These processes and materials are critically evaluated to illustrate their potential, associated challenges and their key solutions. Some of these challenges originate from the tested materials while others are inherent to the treatment process and the prospects for improvement exist at their intersection. Future research should aim to rationally improve the catalytic and adsorption properties of these materials and explore their practical implementation in wastewater treatment technologies.
راعي المشروع- European Regional Fund - grant No. NFP313020BUZ3 - Qatar University, Qatar and Sultan Qaboos University - grant No. CL/SQU-QU/CESR/21/01, IRCC-2021-014 - Agentúra na Podporu Výskumu a Vývoja - grant No. APVV-21-0039 - European Regional Fund within the Operational Programme Integrated Infrastructure (project USCCCORD – ZoNFP: NFP313020BUZ3 ).
اللغةen
الناشرElsevier
الموضوعWastewater treatment
Hybrid materials
Advanced oxidation processes
Adsorption
Emerging environmental pollutants
العنوانDual functional materials capable of integrating adsorption and Fenton-based oxidation processes for highly efficient removal of pharmaceutical contaminants
النوعArticle
رقم المجلد52
ESSN2214-7144


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة