عرض بسيط للتسجيلة

المؤلفKhan, Muhammad Asif
المؤلفHamila, Ridha
المؤلفErbad, Aiman
المؤلفGabbouj, Moncef
تاريخ الإتاحة2023-04-04T09:09:09Z
تاريخ النشر2023
اسم المنشورIEEE Systems Journal
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/JSYST.2022.3198711
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41635
الملخصAdvances in communication technologies and computational capabilities of Internet of Things (IoT) devices enable a range of complex applications that require ever increasing processing of sensors' data. An illustrative example is real-time video surveillance that captures videos of target scenes and process them to detect anomalies using deep learning (DL). Running deep learning models requires huge processing and incurs high computation delay and energy consumption on resource-constraint IoT devices. In this article, we introduce methods for distributed inference over IoT devices and edge server. Two distinct algorithms are proposed to split the deep neural network layers computation between IoT device and an edge server; the early split strategy (ESS) for battery powered IoT devices and the late split strategy (LSS) for IoT devices connected to regular power source. The evaluation shows that both the ESS and LSS schemes achieve the target inference delay deadline when tested over VGG16 and MobileNet-V2 CNN models. In terms of computational load, the ESS scheme achieves nearly 15-20% reduction whereas LSS scheme achieves up to 60% reduction. The gains in energy saving of IoT devices for both the ESS and LSS schemes are nearly 18% and 52%, respectively. 2007-2012 IEEE.
راعي المشروعThis work was supported in part by the Qatar University Internal under Grant IRCC-2020-001 and in part by the NPRP under Grant NPRP13S-0205-200265 from the Qatar National Research Fund (a member of Qatar Foundation).
اللغةen
الناشرIEEE
الموضوعComputation
distributed machine learning
edge computing
inference
neural networks
split strategy
video IoT
العنوانDistributed Inference in Resource-Constrained IoT for Real-Time Video Surveillance
النوعArticle
الصفحات1512-1523
رقم العدد1
رقم المجلد17
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة