• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integration of federated machine learning and blockchain for the provision of secure big data analytics for Internet of Things

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Unal, Devrim
    Hammoudeh, Mohammad
    Khan, Muhammad Asif
    Abuarqoub, Abdelrahman
    Epiphaniou, Gregory
    Hamila, Ridha
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Big data enables the optimization of complex supply chains through Machine Learning (ML)-based data analytics. However, data analytics comes with challenges such as the loss of control and privacy leading to increased risk of data breaches. Federated Learning (FL) is an approach in the ML arena that promises privacy-preserving and distributed model training. However, recent attacks on FL algorithms have raised concerns about the security of this approach. In this article, we advocate using Blockchain to mitigate attacks on FL algorithms operating in Internet of Things (IoT) systems. Integrating Blockchain and FL allows securing the trained models' integrity, thus preventing model poisoning attacks. This research presents a practical approach for the integration of Blockchain with FL to provide privacy-preserving and secure big data analytics services. To protect the security of user data and the trained models, we propose utilizing fuzzy hashing to detect variations and anomalies in FL-trained models against poisoning attacks. The proposed solution is evaluated via simulating attack modes in a quasi-simulated environment. 2021
    DOI/handle
    http://dx.doi.org/10.1016/j.cose.2021.102393
    http://hdl.handle.net/10576/41668
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video