• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Outwelling from arid mangrove systems is sustained by inwelling of seagrass productivity

    Thumbnail
    Date
    2014-07
    Author
    Walton, M.E.M.
    Al-Maslamani, I.
    Skov, M.W.
    Al-Shaikh, I.
    Al-Ansari, I.S.
    Kennedy, H.A.
    Le Vay, L.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Mangrove forest productivity is normally sustained by nutrients from terrestrial runoff, with freshwater inputs driving the resulting outwelling of production, but arid mangroves lack this input. The movement of material between seagrass beds and mangroves was examined using the stable C and N isotopic composition of organisms, sediments and suspended matter in 3 seagrass-mangrove transects in the Arabian Gulf. The isotopic signal of suspended particulate material indicated a mixed origin that did not differ over a spring tide. Filter feeders showed significant 13C enrichment along transects from mangrove forests into seagrass beds, indicating that location within a habitat had a significant effect on isotopic composition. Similarly, 13C of both sediments and grazers increased sharply outside the mangrove forest, suggesting retention of mangrove carbon, although some outwelling was detected, the strength of which was site specific. The lack of freshwater-mediated nutrient inputs suggests any outwelling of mangrove ecosystem productivity must be balanced by inwelling, and isotopic signatures of both sediment grazers and filter feeders found within the mangrove forest confirmed the inwelling of seagrass production. Significant mangrove isotope signals in the tissue of juveniles of fishes commercially harvested offshore indicate ontogenetic movement of carbon. Additional biological movement of mangrove carbon through ontogenetic migration and 'trophic relay' is evidenced by the isotopic signature of juvenile and mature fish captured in waters exiting the mangrove forest, which indicated they fed on mangrove-sustained food webs. This study demonstrates tight coupling between arid mangroves and subtidal seagrass areas and implies that arid mangroves cannot be managed or replanted without consideration of connectivity to downstream systems such as seagrasses.
    DOI/handle
    http://dx.doi.org/10.3354/meps10827
    http://hdl.handle.net/10576/4186
    Collections
    • Marine Science Cluster [‎215‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video