عرض بسيط للتسجيلة

المؤلفSenceroglu, Sait
المؤلفAyari, Mohamed A.
المؤلفRezaei, Tahereh
المؤلفFaress, Fardad
المؤلفKhandakar, Amith
المؤلفChowdhury, Muhammad E. H.
المؤلفJawhar, Zanko H.
تاريخ الإتاحة2023-04-17T06:57:41Z
تاريخ النشر2022
اسم المنشورPharmaceuticals
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/ph15111405
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41936
الملخصThis study constructs a machine learning method to simultaneously analyze the thermodynamic behavior of many polymer-drug systems. The solubility temperature of Acetaminophen, Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin, Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl Acetate, Polyvinylpyrrolidone (PVP), PVP K12, PVP K15, PVP K17, PVP K25, PVP/VA, PVP/VA 335, PVP/VA 535, PVP/VA 635, PVP/VA 735, Soluplus analyzes from a modeling perspective. The least-squares support vector regression (LS-SVR) designs to approximate the solubility temperature of drugs in polymers from polymer and drug types and drug loading in polymers. The structure of this machine learning model is well-tuned by conducting trial and error on the kernel type (i.e., Gaussian, polynomial, and linear) and methods used for adjusting the LS-SVR coefficients (i.e., leave-one-out and 10-fold cross-validation scenarios). Results of the sensitivity analysis showed that the Gaussian kernel and 10-fold cross-validation is the best candidate for developing an LS-SVR for the given task. The built model yielded results consistent with 278 experimental samples reported in the literature. Indeed, the mean absolute relative deviation percent of 8.35 and 7.25 is achieved in the training and testing stages, respectively. The performance on the largest available dataset confirms its applicability. Such a reliable tool is essential for monitoring polymer-drug systems' stability and deliverability, especially for poorly soluble drugs in polymers, which can be further validated by adopting it to an actual implementation in the future. 2022 by the authors.
راعي المشروعThe publication of this article was funded by the Qatar National Library.
اللغةen
الناشرMDPI
الموضوعdrug
kernel type
polymer
solubility temperature
support vector regression
tuning techniques
العنوانConstructing an Intelligent Model Based on Support Vector Regression to Simulate the Solubility of Drugs in Polymeric Media
النوعArticle
رقم العدد11
رقم المجلد15


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة