عرض بسيط للتسجيلة

المؤلفKhandakar, Amith
المؤلفChowdhury, Muhammad E. H.
المؤلفReaz, Mamun B.
المؤلفAli, Sawal H.
المؤلفAbbas, Tariq O.
المؤلفAlam, Tanvir
المؤلفAyari, Mohamed A.
المؤلفMahbub, Zaid B.
المؤلفHabib, Rumana
المؤلفRahman, Tawsifur
المؤلفTahir, Anas M.
المؤلفBakar, Ahmad Ashrif A.
المؤلفMalik, Rayaz A.
تاريخ الإتاحة2023-04-17T06:57:43Z
تاريخ النشر2022
اسم المنشورSensors
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/s22051793
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41955
الملخصDiabetes mellitus (DM) can lead to plantar ulcers, amputation and death. Plantar foot thermogram images acquired using an infrared camera have been shown to detect changes in temperature distribution associated with a higher risk of foot ulceration. Machine learning approaches applied to such infrared images may have utility in the early diagnosis of diabetic foot complications. In this work, a publicly available dataset was categorized into different classes, which were corrobo-rated by domain experts, based on a temperature distribution parameter-the thermal change index (TCI). We then explored different machine-learning approaches for classifying thermograms of the TCI-labeled dataset. Classical machine learning algorithms with feature engineering and the convolutional neural network (CNN) with image enhancement techniques were extensively investigated to identify the best performing network for classifying thermograms. The multilayer perceptron (MLP) classifier along with the features extracted from thermogram images showed an accuracy of 90.1% in multi-class classification, which outperformed the literature-reported performance metrics on this dataset. 2022 by the authors. Licensee MDPI, Basel, Switzerland.
راعي المشروعFunding: This research was funded by Qatar National Research Fund (QNRF), International Research Collaboration Co-Fund (IRCC)-Qatar University and University Kebangsaan Malaysia with grant number NPRP12S-0227-190164, IRCC-2021-001 and DPK-2021-001 respectively.
اللغةen
الناشرMDPI
الموضوعDeep learning
Diabetic foot
Machine learning
Thermal change index
Thermogram
العنوانThermal Change Index-Based Diabetic Foot Thermogram Image Classification Using Machine Learning Techniques
النوعArticle
رقم العدد5
رقم المجلد22
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة