عرض بسيط للتسجيلة

المؤلفHaque, Fahmida
المؤلفBin Ibne Reaz, Mamun
المؤلفChowdhury, Muhammad E.
المؤلفSrivastava, Geetika
المؤلفHamid Md Ali, Sawal
المؤلفBakar, Ahmad Ashrif A.
المؤلفBhuiyan, Mohammad A.
تاريخ الإتاحة2023-04-17T06:57:46Z
تاريخ النشر2021
اسم المنشورDiagnostics
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/diagnostics11050801
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41982
الملخصBackground: Diabetic peripheral neuropathy (DSPN), a major form of diabetic neuropathy, is a complication that arises in long-term diabetic patients. Even though the application of machine learning (ML) in disease diagnosis is a very common and well-established field of research, its application in diabetic peripheral neuropathy (DSPN) diagnosis using composite scoring techniques like Michigan Neuropathy Screening Instrumentation (MNSI), is very limited in the existing literature. Method: In this study, the MNSI data were collected from the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. Two different datasets with different MNSI variable combinations based on the results from the eXtreme Gradient Boosting feature ranking technique were used to analyze the performance of eight different conventional ML algorithms. Results: The random forest (RF) classifier outperformed other ML models for both datasets. However, all ML models showed almost perfect reliability based on Kappa statistics and a high correlation between the predicted output and actual class of the EDIC patients when all six MNSI variables were considered as inputs. Conclusions: This study suggests that the RF algorithm-based classifier using all MNSI variables can help to predict the DSPN severity which will help to enhance the medical facilities for diabetic patients. 2021 by the authors. Licensee MDPI, Basel, Switzerland.
راعي المشروعFunding: This research is financially supported by Xiamen University Malaysia, Project number XMUMRF/2018-C2/IECE/0002, Universiti Kebangsaan Malaysia (UKM), grant nos. DPK-2021-001, GP-2019-K017701, and DIP-2020-004; and Qatar National Research Foundation (QNRF), grant no. NPRP12s-0227-190164.
اللغةen
الناشرMDPI
الموضوعDiabetic neuropathy
DSPN
Machine learning
ML
MNSI
Severity classification
العنوانPerformance analysis of conventional machine learning algorithms for diabetic sensorimotor polyneuropathy severity classification
النوعArticle
رقم العدد5
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة