Angle-insensitive co-polarized metamaterial absorber based on equivalent circuit analysis for dual band WiFi applications
Author | Hannan, Saif |
Author | Islam, Mohammad Tariqul |
Author | Faruque, Mohammad Rashed Iqbal |
Author | Chowdhury, Muhammad E. H. |
Author | Musharavati, Farayi |
Available date | 2023-04-17T06:57:48Z |
Publication Date | 2021 |
Publication Name | Scientific Reports |
Resource | Scopus |
Abstract | A novel and systematic procedure to design a co-polarized electromagnetic metamaterial (MM) absorber with desired outputs and resonance frequencies for dual-band WiFi signal absorption is presented. The desired resonance frequencies with expected S parameters' values were first designed as an equivalent circuit with extensive analysis and then implemented into frequency-selective MM absorber by numerical simulation with precise LRC elements, satisfying least unit cell area (0.08λ), substrate thickness (0.01λ) and maximum effective medium ratio (12.49). The absorber was simulated for the maximum angle of incidence for both the normal and oblique incidences at co-polarization. The absorptions at the desired resonance frequencies were found at a satisfactory level by both simulation and practical measurement along with a single negative value to ensure metamaterial characteristics. The proposed equivalent circuit analysis approach can help researchers design and engineering co-polarization insensitive MM absorbers using conventional split-ring resonators, with perfection in output and desired resonance frequencies without the necessity of lumped elements or multilayer substrates. The proposed metamaterial can be utilized for SAR reduction, crowdsensing, and other WiFi-related practical applications. |
Sponsor | This work was supported by the Universiti Kebangsaan Malaysia research grant GUP-2020-017. This work was also supported by Grant NPRP11S-0102-180178 from the Qatar National Research Fund, a member of Qatar Foundation, Doha, Qatar, and the claims made herein are solely the responsibility of the authors. |
Language | en |
Publisher | Nature Research |
Subject | cell culture computer simulation incidence polarization thickness Engineering Materials science |
Type | Article |
Issue Number | 1 |
Volume Number | 11 |
Files in this item
This item appears in the following Collection(s)
-
Electrical Engineering [2649 items ]
-
Mechanical & Industrial Engineering [1396 items ]