• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly conductive phase change composites based on paraffin-infiltrated graphite panels for photo/electrothermal conversion and storage

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352152X23008460-main.pdf (8.527Mb)
    Date
    2023
    Author
    Nishad, Safna
    Kasak, Peter
    Krupa, Igor
    Metadata
    Show full item record
    Abstract
    The extensive utilization of phase change materials (PCMs) for thermal energy harvesting, storage, and thermal management is often constrained by their inadequate thermal and electrical conductivity, form instability, and lack of photoabsorbance. To overcome these challenges, a phase change composite was prepared by vacuum infiltration of paraffin wax (PW) into a highly conductive scaffold of graphite panel (GP). Various PW grades with different phase change temperatures were tested to study their suitability for a wide range of applications. Graphite-based skeleton ensured high thermal and electrical conductivity and impeded liquid PW leakage in all composites. The composite thermal conductivity was enhanced up to 677 and 22 times that of PW in the axial and radial directions, respectively. The latent heat capacity of the composites varied between 88.5 and 102.7 J/g, depending on the PW grade. The composites are capable of harvesting thermal energy either by applying a small voltage of 1.8 V with a high electrothermal conversion efficiency of up to 71.1 % or by simulated sunlight with an excellent photothermal conversion efficiency of up to 76.5 %. The simple fabricating technique, a broad range of applications with different PW grades, and their efficient thermal properties meet the requirements for widespread utilization in thermal energy harvesting, storage, and thermal management of electronics, buildings, etc. 2023 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.est.2023.107449
    http://hdl.handle.net/10576/42788
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video