Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection
عرض / فتح
التاريخ
2022-05-12المؤلف
Alhaddad, Ahmad YaserAly, Hussein
Gad, Hoda
Al-Ali, Abdulaziz
Sadasivuni, Kishor Kumar
Cabibihan, John John
Malik, Rayaz A.
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
(Figure presented.) Diabetes mellitus is characterized by elevated blood glucose levels, however patients with diabetes may also develop hypoglycemia due to treatment. There is an increasing demand for non-invasive blood glucose monitoring and trends detection amongst people with diabetes and healthy individuals, especially athletes. Wearable devices and non-invasive sensors for blood glucose monitoring have witnessed considerable advances. This review is an update on recent contributions utilizing novel sensing technologies over the past five years which include electrocardiogram, electromagnetic, bioimpedance, photoplethysmography, and acceleration measures as well as bodily fluid glucose sensors to monitor glucose and trend detection. We also review methods that use machine learning algorithms to predict blood glucose trends, especially for high risk events such as hypoglycemia. Convolutional and recurrent neural networks, support vector machines, and decision trees are examples of such machine learning algorithms. Finally, we address the key limitations and challenges of these studies and provide recommendations for future work.
معرّف المصادر الموحد
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131197443&origin=inwardالمجموعات
- الأبحاث [1378 items ]