عرض بسيط للتسجيلة

المؤلفSirinukunwattana, Korsuk
المؤلفSavage, Richard S.
المؤلفBari, Muhammad F.
المؤلفSnead, David R.J.
المؤلفRajpoot, Nasir M.
تاريخ الإتاحة2016-03-31T14:00:58Z
تاريخ النشر2013-10
اسم المنشورPLoS ONE
المصدرScopus
الاقتباسSirinukunwattana K, Savage RS, Bari MF, Snead DRJ, Rajpoot NM (2013) Bayesian Hierarchical Clustering for Studying Cancer Gene Expression Data with Unknown Statistics. PLoS ONE 8(10): e75748.
الرقم المعياري الدولي للكتاب1932-6203
معرّف المصادر الموحدhttp://dx.doi.org/10.1371/journal.pone.0075748
معرّف المصادر الموحدhttp://hdl.handle.net/10576/4302
الملخصClustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC) algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC) algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data. The implementation of GBHC is available at at https://sites.google.com/site/gaussianbhc/.
راعي المشروعKorsuk Sirinukunwattana is partly funded by Qatar National Research Fund grant no. NPRP5-1345-1-228 and partly by the Department of Computer Science, University of Warwick. RSS acknowledges the support of an Medical Research Council Biostatistics Fellowship (G0902104). MFB acknowledges the support of Higher Education Commission and Dow University of Health Science, Pakistan. Funding for the collection of lung tissue was from the West Midlands Lung Tissue Consortium.
اللغةen
الناشرPublic Library of Science
الموضوعBayes theorem
Bayesian hierarchical clustering
classification algorithm
cluster analysis
conjugate
gene cluster
gene expression
normal distribution
nucleotide sequence
tumor gene
algorithm
gene expression profiling
gene expression regulation
genetics
العنوانBayesian Hierarchical Clustering for Studying Cancer Gene Expression Data with Unknown Statistics
النوعArticle
رقم العدد10
رقم المجلد8
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة