• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Polyepoxysuccinic Acid-Grafted Polyacrylamide as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution.

    Thumbnail
    View/Open
    acsomega.2c07607.pdf (8.422Mb)
    Date
    2023-05-16
    Author
    Jalab, Rem
    Ali, Ahmed Ben
    Khaled, Mazen
    Abouseada, Maha
    AlKhalil, Safa
    Al-Suwaidi, Amna
    Hamze, Sali
    Hussein, Ibnelwaleed A
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Utilizing green corrosion inhibitors has been classified among the most efficient and economical mitigation practices against metallic degradation and failure. This study aims to integrate the features of green and complementary properties of polyepoxysuccinic acid (PESA) and polyacrylamide (PAM) for steel corrosion inhibition. A novel PESA-grafted-PAM (PESAPAM) has been first-ever synthesized in this research study and deployed as a corrosion inhibitor for C-steel in 1.0 M HCl solution. Eco-toxicity prediction confirmed the environmentally friendly properties acquired by the synthesized inhibitor. Electrochemical, kinetics, and surface microscopic studies were carried out to gain a holistic view of C-steel corrosion behavior with the PESAPAM. Furthermore, the performance of PESAPAM was compared with that of the pure PESA under the same testing conditions. Results revealed predominant inhibitive properties of PESAPAM with an inhibition efficiency (IE) reaching 90% at 500 mg·L at 25 °C. Grafting PAM onto the PESA chain showed an overall performance improvement of 109% from IE% of 43 to 90%. Electrochemical measurements revealed a charge transfer-controlled corrosion mechanism and the formation of a thick double layer on the steel surface. The potentiodynamic study classified PESAPAM as a mixed-type inhibitor. Furthermore, the investigation of C-steel corrosion kinetics with the presence of PESAPAM predicted an activation energy of 85 kJ·mol, correlated with a physical adsorption behavior. Finally, performed scanning electron microscopy and energy-dispersive X-ray analyses confirmed the adsorption of PESA and PESAPAM, with superior coverage of PESAPAM onto the steel surface.
    DOI/handle
    http://dx.doi.org/10.1021/acsomega.2c07607
    http://hdl.handle.net/10576/43446
    Collections
    • Chemical Engineering [‎1196‎ items ]
    • Chemistry & Earth Sciences [‎605‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video