Bayesian network and response surface methodology for prediction and improvement of bacterial metabolite production
المؤلف | Bouchaala, Lobna |
المؤلف | Ben Khedher, Saoussen |
المؤلف | Mezghanni, Héla |
المؤلف | Zouari, Nabil |
المؤلف | Tounsi, Slim |
تاريخ الإتاحة | 2023-06-01T07:31:32Z |
تاريخ النشر | 2015 |
اسم المنشور | 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2015 - Proceedings |
المصدر | Scopus |
الملخص | The optimization of antifungal activity production by Bacillus amyloliquefaciens was carried out using Response Surface Methodology (RSM) in two steps. The first step involved the screening of cultural parameters affecting the production. The second step involved the optimization of significant ones. In this study, we used Bayesian network to predict the results of the experiments required for the second step. Then, by RSM, using the predicted values by BN, we defined the composition of a culture medium allowing 56% improvement in antifungal activity production over the basal medium. Such medium composition and improvement were shown to be similar to that obtained in the previous study demonstrating that, when coupled with RSM, BN permitted improvement of antifungal activity production with a much reduced number of experiments. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | antifungal activity Bacillus amyloliquefaciens Bayesian network learning response surface methodology |
النوع | Conference Paper |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
العلوم البيولوجية والبيئية [920 items ]