Propagation of online consumer perceived negativity: Quantifying the effect of supply chain underperformance on passenger car sales
المؤلف | Amit, Singh |
المؤلف | Jenamani, Mamata |
المؤلف | Thakkar, Jitesh J. |
المؤلف | Rana, Nripendra P. |
تاريخ الإتاحة | 2023-06-08T09:54:59Z |
تاريخ النشر | 2021-04-21 |
اسم المنشور | Journal of Business Research |
المعرّف | http://dx.doi.org/10.1016/j.jbusres.2021.04.027 |
الاقتباس | Singh, A., Jenamani, M., Thakkar, J. J., & Rana, N. P. (2021). Propagation of online consumer perceived negativity: Quantifying the effect of supply chain underperformance on passenger car sales. Journal of Business Research, 132, 102-114. |
الرقم المعياري الدولي للكتاب | 0148-2963 |
الملخص | The paper presents a text analytics framework that analyses online reviews to explore how consumer-perceived negativity corresponding to the supply chain propagates over time and how it affects car sales. In particular, the framework integrates aspect-level sentiment analysis using SentiWordNet, time-series decomposition, and bias-corrected least square dummy variable (LSDVc) – a panel data estimator. The framework facilitates the business community by providing a list of consumers’ contemporary interests in the form of frequently discussed product attributes; quantifying consumer-perceived performance of supply chain (SC) partners and comparing the competitors; and a model assessing various firms’ sales performance. The proposed framework demonstrated to the automobile supply chain using a review dataset received from a renowned car-portal in India. Our findings suggestthat consumer-voiced negativity is maximum for dealers and minimum for manufacturing and assembly related features. Firm age, GDP, and review volume significantly influence car sales whereas the sentiments corresponding to SC partners do not. The proposed research framework can help the manufacturers in inspecting their SC partners; realising consumer-cited critical car sales influencers; and accurately predicting the sales, which in turn can help them in better production planning, supply chain management, marketing, and consumer relationships. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Supply chain management Sentiment analysis Panel data modelling Online reviews Natural language processing |
النوع | Article |
الصفحات | 102-114 |
رقم المجلد | 132 |
ESSN | 1873-7978 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الإدارة والتسويق [742 items ]