A classifier to detect best mode for Solar Chimney Power Plant system
المؤلف | Abdelsalam, Emad |
المؤلف | Darwish, Omar |
المؤلف | Karajeh, Ola |
المؤلف | Almomani, Fares |
المؤلف | Darweesh, Dirar |
المؤلف | Kiswani, Sanad |
المؤلف | Omar, Abdullah |
المؤلف | Alkisrawi, Malek |
تاريخ الإتاحة | 2023-06-25T08:25:37Z |
تاريخ النشر | 2022 |
اسم المنشور | Renewable Energy |
المصدر | Scopus |
الملخص | Machine learning (ML) classifiers were used as a novel approach to select the best operating mode for Hybrid Solar Chimney Power Plant (HSCPP). The classifiers (decision tree (J48), Nave Bayes (NB), and Support Vector Machines (SVM)) were developed to identify the best operating modes of the HSCPP based on meteorological data sets. The HSCPP uses solar irradiation (SolarRad) to function as a power plant (PP) during the day and as a cooling tower (CT) at night. The SVM is the best classifier to predict the operating mode of HSCPP with an accuracy of ∼2% compared to NB and J48. Under the studied conditions the Regression analysis using REPTree was found to outperform SMOreg and achieved a relative absolute error ∼20 kWh. The productivity of the HSCPP is highly affected by maximum air temperature (Tair,Max), the average temperature of air (T air,Avg), solar irradiation standard deviation (SolarRadSTD), and maximum wind speed (Wsp,Max). Under optimal conditions, the HSCPP generates an additional 2.5% of energy equivalent to revenue of $3910.5 per year. Results show that ML can be used to optimize the operation of HSCPP for maximum electrical power and distilled water production. |
راعي المشروع | The authors appreciate the support provided by the MERG lab (www.htu.edu.jo/merg). Open Access funding provided by the Qatar National Library. |
اللغة | en |
الناشر | Elsevier |
الموضوع | AI Machine learning (ML) Power generation Process performance efficiency Water production |
النوع | Article |
الصفحات | 244-256 |
رقم المجلد | 197 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكيميائية [1174 items ]