Show simple item record

AuthorJalab, Rem
AuthorSaad, Mohammed A.
AuthorSliem, Mostafa H.
AuthorAbdullah, Aboubakr M.
AuthorHussein, Ibnelwaleed A.
Available date2023-07-12T07:28:16Z
Publication Date2022
Publication NameMolecules
ResourceScopus
URIhttp://dx.doi.org/10.3390/molecules27196414
URIhttp://hdl.handle.net/10576/45399
AbstractThe corrosion of industrial material is a costly problem associated with global economic losses reaching trillions of US dollars in the repair of failures. Injecting corrosion inhibitors is the most practically promising method for decelerating corrosion reactions and protecting surfaces. Recent investigations have focused on surfactants as corrosion inhibitors due to their amphiphilic nature, low cost, and simple chemical preparation procedures. This study aims to investigate the performance of an environment-friendly Quaternium-22 (Q-22) surfactant which is widely used in cosmetics for C-steel corrosion inhibition in a 5 M HCl medium. Weight loss experiments were performed at different concentrations and immersion times, presenting a maximum efficiency at 2.22 mmol·L−1. The influence of Q-22 on the corrosion behavior of C-steel was elucidated using non-destructive electrochemical measurements. The overall results revealed that adding varied concentrations of Q-22 significantly decreases the corrosion rate of C-steel. The results revealed the physisorption nature of Q-22 onto the C-steel surface, with adsorption following the Freundlich isotherm (∆Hads = −16.40 kJ·mol−1). The relative inhibition performance of Q-22 was also evaluated by SEM and AFM analyses. Lastly, quantum chemical calculations based on density functional theory (DFT) demonstrated that Q-22 has promising molecular features concerning the anticorrosive mechanism.
SponsorThis publication was supported by Qatar University National Capacity Building Program (NCBP), grant #QUCP-CENG-2021-03. The findings achieved herein are solely the responsibility of the authors. The Gas Processing Center, Center of Advanced Materials, and Central Laboratories Unit at Qatar University are acknowledged for providing their support and facilities. In addition, the authors would like to acknowledge the use of computational resources provided by Texas A&M University in Qatar.
Languageen
PublisherMDPI
Subjectcorrosion inhibitor
eco-friendly surfactant
quantum calculations
TitleAn Eco-Friendly Quaternary Ammonium Salt as a Corrosion Inhibitor for Carbon Steel in 5 M HCl Solution: Theoretical and Experimental Investigation
TypeArticle
Pagination-
Issue Number19
Volume Number27
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record