• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Secure Bluetooth Communication in Smart Healthcare Systems: A Novel Community Dataset and Intrusion Detection System

    Thumbnail
    View/Open
    sensors-22-08280-v2.pdf (2.545Mb)
    Date
    2022
    Author
    Zubair, Mohammed
    Ghubaish, Ali
    Unal, Devrim
    Al-Ali, Abdulla
    Reimann, Thomas
    Alinier, Guillaume
    Hammoudeh, Mohammad
    Qadir, Junaid
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97-99.5% based on the F1 scores. 2022 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/s22218280
    http://hdl.handle.net/10576/45587
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video