• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular identification and biocontrol of ochratoxigenic fungi and ochratoxin A in animal feed marketed in the state of Qatar

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Molecular identification and biocontrol of ochratoxigenic fungi and ochratoxin A in animal feed marketed in the state of Qatar.pdf (4.034Mb)
    Date
    2023-01-01
    Author
    Alsalabi, Fatma Ali
    Hassan, Zahoor Ul
    Al-Thani, Roda F.
    Jaoua, Samir
    Metadata
    Show full item record
    Abstract
    Ochratoxin A (OTA) is a toxic fungal metabolite produced by some Aspergillus and Penicillium species. This work was designed to explore the presence of OTA and ochratoxigenic fungi in feed grains marketed in Qatar and their biological control by a bacterium (Burkholderia cepacia). Significantly higher levels of OTA were detected in mixed grains samples (144.59 ± 6.63 μg/kg), compared to the maize (25.27 ± 1.89 μg/kg) and wheat (3.37 ± 0.11 μg/kg). OTA-producing fungi (A. niger, A. ochraceus, A. westerdijkiae, A. carbonarius and P. verrucosum) were identified on the basis of their morphological features as well as through polymerase chain reaction (PCR). Putative ochratoxigenic polyketide genes in these isolates were evidenced by using primers AoOTA-L/AoOTA-R (in A. ochraceus and A. westerdijkiae), AoPks1/AoPks2 (in A. niger and A. ochraceus) and PenPks1/Penpks2 (in P. verrucosum). On synthetic media, A. westerdijkiae showed the highest OTA synthesis (5913 ± 576 μg/kg) than the closely related A. ochraceus (3520 ± 303 μg/kg), A. carbonarius (3064 ± 289 μg/kg) and P. verrucosum (3030 ± 710 μg/kg). Burkholderia cepacia cells and culture extract showed promising biological control potentials against OTA producing fungi. On the basis of these findings, it can be concluded that animal feed samples are generally contaminated with OTA-producing fungi as well as OTA, and Burkholderia cepacia CS5 exhibits promising antifungal activities.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85146070070&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2023.e12835
    http://hdl.handle.net/10576/46349
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video