Seismic detection and characterization of a man-made karst analog - A feasibility study
الملخص
At the site of a water drainage shaft on the campus of Qatar University that serves as a man-made karst analog, two seismic imaging techniques were adapted to use resonant scattered waves recorded during active-source seismic surveys and during passive ambient-noise surveys. Data acquisition included two seismic transmission surveys that encompassed the shaft and a passive ambient-noise survey that extended across the top of the shaft. Seismic imaging of band-pass-filtered resonance waves correctly estimated the location and dimension of the shaft. Furthermore, the method detected the presence and the location of a horizontal drainage pipe and gravel bed connecting neighboring water shafts. Ambient-noise data were analyzed by computing amplitude values of the seismic records in spectral passbands. The results indicated an amplification of seismic amplitudes above the shaft for low-frequency passbands and a sharp decrease in amplitude values for high-frequency passbands. The high- and low-amplitude values displayed as a function of the receiver position allowed for accurate detection and location of the shaft in space. Ground truthing of the imaging results confirmed the accuracy of the seismic techniques, whereas numerical modeling supported the interpretation of the ambient-noise data. The techniques used do not require knowledge of the seismic velocities in the subsurface, but they depend on a priori information about the approximate location of the target.
معرّف المصادر الموحد
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119457631&origin=inwardالمجموعات
- مجموعة علوم الأرض [214 items ]