SELF-ORGANIZED VARIATIONAL AUTOENCODERS (SELF-VAE) FOR LEARNED IMAGE COMPRESSION
المؤلف | Yílmaz, M. Akín |
المؤلف | Kelesş, Onur |
المؤلف | Güven, Hilal |
المؤلف | Tekalp, A. Murat |
المؤلف | Malik, Junaid |
المؤلف | Kíranyaz, Serkan |
تاريخ الإتاحة | 2023-09-24T08:57:18Z |
تاريخ النشر | 2021 |
اسم المنشور | Proceedings - International Conference on Image Processing, ICIP |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 2381-8549 |
الملخص | In end-to-end optimized learned image compression, it is standard practice to use a convolutional variational autoencoder with generalized divisive normalization (GDN) to transform images into a latent space. Recently, Operational Neural Networks (ONNs) that learn the best non-linearity from a set of alternatives, and their "self-organized" variants, Self-ONNs, that approximate any non-linearity via Taylor series have been proposed to address the limitations of convolutional layers and a fixed nonlinear activation. In this paper, we propose to replace the convolutional and GDN layers in the variational autoencoder with self-organized operational layers, and propose a novel self-organized variational autoencoder (Self-VAE) architecture that benefits from stronger non-linearity. The experimental results demonstrate that the proposed Self-VAE yields improvements in both rate-distortion performance and perceptual image quality. |
راعي المشروع | This work was supported by TUBITAK projects 217E033 and 120C156, and a grant from Turkish Is Bank to KUIS AI Center. A. M. Tekalp also acknowledges support from Turkish Academy of Sciences (TUBA). |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | End-to-end learned image compression Perceptual quality metrics Rate-distortion performance Self-organized operational layer Variational autoencoder |
النوع | Conference Paper |
الصفحات | 3732-3736 |
رقم المجلد | 2021-September |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]