SRL-SOA: SELF-REPRESENTATION LEARNING WITH SPARSE 1D-OPERATIONAL AUTOENCODER FOR HYPERSPECTRAL IMAGE BAND SELECTION
المؤلف | Ahishali, Mete |
المؤلف | Kiranyaz, Serkan |
المؤلف | Ahmad, Iftikhar |
المؤلف | Gabbouj, Moncef |
تاريخ الإتاحة | 2023-09-24T08:57:19Z |
تاريخ النشر | 2022 |
اسم المنشور | Proceedings - International Conference on Image Processing, ICIP |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 2381-8549 |
الملخص | The band selection in the hyperspectral image (HSI) data processing is an important task considering its effect on the computational complexity and accuracy. In this work, we propose a novel framework for the band selection problem: Self-Representation Learning (SRL) with Sparse 1D-Operational Autoencoder (SOA). The proposed SLR-SOA approach introduces a novel autoencoder model, SOA, that is designed to learn a representation domain where the data are sparsely represented. Moreover, the network composes of 1D-operational layers with the non-linear neuron model. Hence, the learning capability of neurons (filters) is greatly improved with shallow architectures. Using compact architectures is especially crucial in autoencoders as they tend to overfit easily because of their identity mapping objective. Overall, we show that the proposed SRL-SOA band selection approach outperforms the competing methods over two HSI data including Indian Pines and Salinas-A considering the achieved land cover classification accuracies. The software implementation of the SRL-SOA approach is shared publicly. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Band selection hyperspectral image data machine learning self-representation learning sparse autoencoders |
النوع | Conference Paper |
الصفحات | 2296-2300 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]