Early Myocardial Infarction Detection with One-Class Classification over Multi-view Echocardiography
المؤلف | Degerli, Aysen |
المؤلف | Sohrab, Fahad |
المؤلف | Kiranyaz, Serkan |
المؤلف | Gabbouj, Moncef |
تاريخ الإتاحة | 2023-09-24T08:57:19Z |
تاريخ النشر | 2022 |
اسم المنشور | Computing in Cardiology |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 2325-8861 |
الملخص | Myocardial infarction (MI) is the leading cause of mortaZity and morbidity in the world. Early therapeutics of MI can ensure the prevention of further myocardial necrosis. Echocardiography is the fundamental imaging technique that can reveal the earliest sign of MI. However, the scarcity of echocardiographic datasets for the MI detection is the major issue for training data-driven classification algorithms. In this study, we propose a frame-work for early detection of MI over multi-view echocardio-graphy that leverages one-class classification (OCC) techniques. The OCC techniques are used to train a model for detecting a specific target class using instances from that particular category only. We investigated the usage of uni-modal and multi-modal one-class classification techniques in the proposed framework using the HMC-QU dataset that includes apical 4-chamber (A4C) and apical 2-chamber (A2C) views in a total of 260 echocardiography recordings. Experimental results show that the multi-modal approach achieves a sensitivity level of 85.23% and F1-Score of 80.21%. |
راعي المشروع | This study was supported in part by the NSF-Business Finland Center for Visual and Decision Informatics (CVDI) Advanced Machine Learning for Industrial Applications (AMaLIA) under Grant 4183/31/2021, and in part by the Haltian Stroke-Data projects. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Image and Video Processing (eess.IV) Computer Vision and Pattern Recognition (cs.CV) |
النوع | Conference Paper |
الصفحات | - |
رقم المجلد | 2022-September |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]