عرض بسيط للتسجيلة

المؤلفLanouar, Charfeddine
المؤلفZaidan, Esmat
المؤلفAlban, Ahmad Qadeib
المؤلفBennasr, Hamdi
المؤلفAbulibdeh, Ammar
تاريخ الإتاحة2023-09-26T07:13:03Z
تاريخ النشر2023-11-30
اسم المنشورSustainable Cities and Society
المعرّفhttp://dx.doi.org/10.1016/j.scs.2023.104860
الرقم المعياري الدولي للكتاب22106707
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2210670723004717
معرّف المصادر الموحدhttp://hdl.handle.net/10576/47967
الملخصAccurately modeling and forecasting electricity consumption remains a challenging task due to the large number of the statistical properties that characterize this time series such as seasonality, trend, sudden changes, slow decay of autocorrelation function, among many others. This study contributes to this literature by using and comparing four advanced time series econometrics models, and four machine learning and deep learning models11These models include the autoregressive model with seasonality, autoregressive models with exogenous variables, the autoregressive fractionally integrated moving average model with exogenous variables, the three state autoregressive Markov switching model with exogenous variable, Prophet, EXtreme Gradient Boosting, Long-Short-Term Memory and Support Vector Regression. to analyze and forecast electricity consumption during COVID-19 pre-lockdown, lockdown, releasing-lockdown, and post-lockdown phases. Monthly data on Qatar’s total electricity consumption has been used from January 2010 to December 2021. The empirical findings demonstrate that both econometric and machine learning models are able to capture most of the important statistical features characterizing electricity consumption. In particular, it is found that climate change based factors, e.g temperature, rainfall, mean sea-level pressure and wind speed, are key determinants of electricity consumption. In terms of forecasting, the results indicate that the autoregressive fractionally integrated moving average and the three state autoregressive Markov switching models with exogenous variables outperform all other models. Policy implications and energy-environmental recommendations are proposed and discussed.
راعي المشروعThis publication was made possible by an NPRP award [NPRP13S0206-200272] from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The open access publication of this article was funded by the Qatar National Library (QNL).
اللغةen
الناشرElsevier
الموضوعElectricity consumption
Forecasting
COVID-19
Nonlinear econometric models
Machine and deep learning models
العنوانModeling and forecasting electricity consumption amid the COVID-19 pandemic: Machine learning vs. nonlinear econometric time series models
النوعArticle
رقم المجلد98
Open Access user License http://creativecommons.org/licenses/by/4.0/
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة