Factors Affecting Student Satisfaction Towards Online Teaching: A Machine Learning Approach
المؤلف | Ben Said, Ahmed |
المؤلف | Abdel-Salam, Abdel-Salam G. |
المؤلف | Abu-Shanab, Emad |
المؤلف | Alhazaa, Khalifa |
تاريخ الإتاحة | 2023-10-08T08:41:46Z |
تاريخ النشر | 2022 |
اسم المنشور | Studies in Computational Intelligence |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 1860949X |
الملخص | During the outbreak of the Covid-19 pandemic, universities were forced to adopt technology and collaboration tools to reinforce online teaching and sustain their operations. This radical change pushes universities, researchers, educators, practitioners and decision makers to explore the perceptions of students and provide high quality online teaching operations. This study offers an understanding of the factors influencing students' satisfaction with online teaching. Using data from an institutional survey, a machine learning approach is developed along with feature importance analysis using Permutation Importance and SHAP. The two techniques yielded similar results, where quality, interaction, and comprehension were the most significant predictors of satisfaction while student class, gender and nationality were insignificant. Such results support previous research conducted on similar data but with different statistical techniques. Other factors might be significant in the online environment such as student support, academic experience, and assessment. |
اللغة | en |
الناشر | Springer Science and Business Media Deutschland GmbH |
الموضوع | Feature importance Machine learning Online learning Student satisfaction |
النوع | Conference Paper |
الصفحات | 309-318 |
رقم المجلد | 1010 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
المحاسبة ونظم المعلومات [527 items ]
-
علوم وهندسة الحاسب [2402 items ]