The basis number of the strong product of paths and cycles with bipartite graphs
المؤلف | Jaradat, M.M.M. |
تاريخ الإتاحة | 2023-11-09T05:37:22Z |
تاريخ النشر | 2007 |
اسم المنشور | Missouri Journal of Mathematical Sciences |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 8996180 |
الملخص | The basis number of a graph G is defined to be the least integer d such that there is a basis B of the cycle space of G such that each edge of G is contained in at most d members of B. MacLane [13] proved that a graph G is planar if and only if the basis number of G is less than or equal to 2. Ali [3] proved that the basis number of the strong product of a path and a star is less than or equal to 4. In this work, (1) We give an appropriate decomposition of trees. (2) We give an upper bound of the basis number of a cycle and a bipartite graph. (3) We give an upper bound of the basis number of a path and a bipartite graph. This is a generalization of Ali's result [3]. |
اللغة | en |
الناشر | Central Missouri State University |
الموضوع | The Basis Number Bipartite Graphs |
النوع | Article |
الصفحات | 219-230 |
رقم العدد | 3 |
رقم المجلد | 19 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علم وتكنولوجيا المواد [310 items ]