عرض بسيط للتسجيلة

المؤلفJaradat, M.M.M.
تاريخ الإتاحة2023-11-09T05:37:22Z
تاريخ النشر2007
اسم المنشورMissouri Journal of Mathematical Sciences
المصدرScopus
الرقم المعياري الدولي للكتاب8996180
معرّف المصادر الموحدhttp://dx.doi.org/10.35834/mjms/1316032980
معرّف المصادر الموحدhttp://hdl.handle.net/10576/49112
الملخصThe basis number of a graph G is defined to be the least integer d such that there is a basis B of the cycle space of G such that each edge of G is contained in at most d members of B. MacLane [13] proved that a graph G is planar if and only if the basis number of G is less than or equal to 2. Ali [3] proved that the basis number of the strong product of a path and a star is less than or equal to 4. In this work, (1) We give an appropriate decomposition of trees. (2) We give an upper bound of the basis number of a cycle and a bipartite graph. (3) We give an upper bound of the basis number of a path and a bipartite graph. This is a generalization of Ali's result [3].
اللغةen
الناشرCentral Missouri State University
الموضوعThe Basis Number
Bipartite Graphs

العنوانThe basis number of the strong product of paths and cycles with bipartite graphs
النوعArticle
الصفحات219-230
رقم العدد3
رقم المجلد19
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة