عرض بسيط للتسجيلة

المؤلفIbtehaz, Nabil
المؤلفChowdhury, Muhammad E. H.
المؤلفKhandakar, Amith
المؤلفKiranyaz, Serkan
المؤلفRahman, M. Sohel
المؤلفZughaier, Susu M.
تاريخ الإتاحة2023-11-19T05:45:36Z
تاريخ النشر2023
اسم المنشورNeural Computing and Applications
المصدرScopus
الرقم المعياري الدولي للكتاب9410643
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s00521-023-08700-z
معرّف المصادر الموحدhttp://hdl.handle.net/10576/49447
الملخصRaman spectroscopy provides a vibrational profile of the molecules and thus can be used to uniquely identify different kinds of materials. This sort of molecule fingerprinting has thus led to the widespread application of Raman spectrum in various fields like medical diagnosis, forensics, mineralogy, bacteriology, virology, etc. Despite the recent rise in Raman spectra data volume, there has not been any significant effort in developing generalized machine learning methods targeted toward Raman spectra analysis. We examine, experiment, and evaluate existing methods and conjecture that neither current sequential models nor traditional machine learning models are satisfactorily sufficient to analyze Raman spectra. Both have their perks and pitfalls; therefore, we attempt to mix the best of both worlds and propose a novel network architecture RamanNet. RamanNet is immune to the invariance property in convolutional neural networks (CNNs) and at the same time better than traditional machine learning models for the inclusion of sparse connectivity. This has been achieved by incorporating shifted multi-layer perceptrons (MLP) at the earlier levels of the network to extract significant features across the entire spectrum, which are further refined by the inclusion of triplet loss in the hidden layers. Our experiments on 4 public datasets demonstrate superior performance over the much more complex state-of-the-art methods, and thus, RamanNet has the potential to become the de facto standard in Raman spectra data analysis.
راعي المشروعThis research is financially supported by Qatar National Research Foundation (QNRF), Grant number NPRP12S-0224-190144. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعConvolutional Neural Networks
Deep learning
Multilayer perceptron
Neural network
Raman spectrum analysis
العنوانRamanNet: a generalized neural network architecture for Raman spectrum analysis
النوعArticle
الصفحات18719-18735
رقم العدد25
رقم المجلد35
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة