• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Environmental impact of fuel spills on land

    Thumbnail
    Date
    2006
    Author
    Badr, O.
    Marafi, A.
    Ben, P.
    Metadata
    Show full item record
    Abstract
    This study considers the toxicity and flammability of emitted fuel vapor from un-ignited pools of spilled chemicals on land. It also estimates the thermal radiation levels emitted from such pools in case they catch fire. A software based on EPA dispersion models was utilized to estimate the size and location of the dangerous clouds. The 3D dangerous clouds were presented in downwind, crosswind, and vertical directions from the source of the spill. The growth and decay of the formed dangerous zones with time were also investigated. Among other input data required by the above-mentioned software, the transient evaporation rate from the spilled fuel pool and its area were determined by considering the equations of conservation of mass and energy. The study also considered the situation when the spill is followed by ignition causing a pool fire. In such a case, the main concern for impact assessment was the US EPA-specified limiting radiation levels to which humans or facilities can be exposed. Exposure to 5.1 kW/m2 for more than 30 seconds can cause 2nd degree bums while exposure to the wood charring radiation level of 12.6 kW/m2 for more than one minute can cause fatality for humans. To facilitate this analysis a fire model developed by the US Gas Research Institute was used to find out safe distances from which fire fighting personnel can work towards extinguishing the fire. The application of such techniqus to a case study of an instantaneous accidental spill from a typical mobile gasoline tanker supplying fuel to local petrol stations showed that the toxic and flammable zones may extend to downwind distances of 561m and 399m, respectively. For ignited pools, on the other hand, the dangerous zones corresponding to radiation levels of 5.1 and 12.6 kW/m2 were 199 and 120 meters, respectively. For the case study of gasoline spill from a typical storage tank in a refinery resulted in the possible formation of toxic clouds extending to about 40,000 m and 48 m in the downwind and vertical directions, respectively. The flammability zone, however, was restricted to the pool area only. For most cases considered, parametric studies were performed to investigate the effects of wind speed, atmospheric stability, and vertical height on the size of dangerous zones. An interface between the dynamic results of the dispersion software and the static data of the Doha Geographical Information System (GIS) allowed the immediate identification of the major landmarks affected by the considered accidents. This data would be of a great help in developing an emergency evacuation plan for such accidents. Copyright © 2006 by ASME.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84920631935&origin=inward
    DOI/handle
    http://dx.doi.org/10.1115/IMECE2006-15343
    http://hdl.handle.net/10576/51668
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video