Show simple item record

AuthorMohamed M.S., Nasser
AuthorRainio, Oona
AuthorVuorinen, Matti
Available date2024-03-12T10:16:29Z
Publication Date2021-11-26
Publication NameJournal of Mathematical Analysis and Applications
Identifierhttp://dx.doi.org/10.1016/j.jmaa.2021.125870
CitationNasser, M. M., Rainio, O., & Vuorinen, M. (2022). Condenser capacity and hyperbolic diameter. Journal of Mathematical Analysis and Applications, 508(1), 125870.
ISSN0022-247X
URIhttps://www.sciencedirect.com/science/article/pii/S0022247X21009525
URIhttp://hdl.handle.net/10576/52959
AbstractGiven a compact connected set E in the unit disk B2, we give a new upper bound for the conformal capacity of the condenser (B2,E) in terms of the hyperbolic diameter t of E. Moreover, for t>0, we construct a set of hyperbolic diameter t and apply novel numerical methods to show that it has larger capacity than a hyperbolic disk with the same diameter. The set we construct is called a Reuleaux triangle in hyperbolic geometry and it has constant hyperbolic width equal to t.
Languageen
PublisherElsevier
SubjectBoundary integral equation
Condenser capacity
Hyperbolic geometry
Isoperimetric inequality
Jung radius
Reuleaux triangle
TitleCondenser capacity and hyperbolic diameter
TypeArticle
Issue Number1
Volume Number508
Open Access user License http://creativecommons.org/licenses/by/4.0/
ESSN1096-0813
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record