• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tea flavanols block advanced glycation of lens crystallins induced by dehydroascorbic acid

    Thumbnail
    Date
    2015-01
    Author
    Zhu, Yingdong
    Zhao, Yantao
    Wang, Pei
    Ahmedna, Mohamed
    Ho, Chi-Tang
    Sang, Shengmin
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Growing evidence has shown that ascorbic acid (ASA) can contribute to protein glycation and the formation of advanced glycation end products (AGEs), especially in the lens. The mechanism by which ascorbic acid can cause protein glycation probably originates from its oxidized form, dehydroascorbic acid (DASA), which is a reactive dicarbonyl species. In the present study, we demonstrated for the first time that four tea flavanols, (−)-epigallocatechin 3-O-gallate (EGCG), (−)-epigallocatechin (EGC), (−)-epicatechin 3-O-gallate (ECG), and (−)-epicatechin (EC), could significantly trap DASA and consequently form 6C- or 8C-ascorbyl conjugates. Among these four flavanols, EGCG exerted the strongest trapping efficacy by capturing approximate 80% of DASA within 60 min. We successfully purified and identified seven 6C- or 8C-ascorbyl conjugates of flavanols from the chemical reaction between tea flavanols and DASA under slightly basic conditions. Of which, five ascorbyl conjugates, EGCGDASA-2, EGCDASA-2, ECGDASA-1, ECGDASA-2 and ECDASA-1, were recognized as novel compounds. The NMR data showed that positions 6 and 8 of the ring A of flavanols were the major active sites for trapping DASA. We further demonstrated that tea flavanols could effectively inhibit the formation of DASA-induced AGEs via trapping DASA in the bovine lens crystallin-DASA assay. In this assay, 8C-ascorbyl conjugates of flavanols were detected as the major adducts using LCMS. This study suggests that daily consumption of beverages containing tea flavanols may prevent protein glycation in the lens induced by ascorbic acid and its oxidized products.
    DOI/handle
    http://dx.doi.org/10.1021/tx500430z
    http://hdl.handle.net/10576/5303
    Collections
    • Human Nutrition [‎435‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video