عرض بسيط للتسجيلة

المؤلفAksikas, Ilyasse
تاريخ الإتاحة2024-03-18T06:08:41Z
تاريخ النشر2020
اسم المنشورJournal of the Franklin Institute
المصدرScopus
الرقم المعياري الدولي للكتاب160032
معرّف المصادر الموحدhttp://dx.doi.org/10.1016/j.jfranklin.2020.07.033
معرّف المصادر الموحدhttp://hdl.handle.net/10576/53122
الملخصThis paper is devoted to the design of an optimal stabilizing compensator for a boundary control distributed parameter system that is described by a set of hyperbolic partial differential equations (PDEs). The standard reformulation of a boundary control system is adopted here to write the system under a regular infinite-dimensional linear system. A finite-dimensional boundary optimal controller is designed based on the linear quadratic technique and the corresponding operator Riccati equation. On the other hand, a Luenberger observer is designed based on the duality between the control and the estimation problems. Combination of the designed controller and observer is performed to construct a stabilizing compensator. A case study of tubular cracking chemical reactor is used to test the performances of the developed algorithm.
اللغةen
الناشرElsevier
الموضوعControllers
Distributed parameter control systems
Linear systems
Riccati equations
Boundary control systems
Distributed parameter systems
Estimation problem
Hyperbolic partial differential equation
Infinite-dimensional linear systems
Luenberger observers
Optimal compensators
Optimal controller
Cracking (chemical)
العنوانDuality-based optimal compensator for boundary control hyperbolic PDEs system: Application to a tubular cracking reactor
النوعArticle
الصفحات9692-9708
رقم العدد14
رقم المجلد357
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة