Duality-based optimal compensator for boundary control hyperbolic PDEs system: Application to a tubular cracking reactor
المؤلف | Aksikas, Ilyasse |
تاريخ الإتاحة | 2024-03-18T06:08:41Z |
تاريخ النشر | 2020 |
اسم المنشور | Journal of the Franklin Institute |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 160032 |
الملخص | This paper is devoted to the design of an optimal stabilizing compensator for a boundary control distributed parameter system that is described by a set of hyperbolic partial differential equations (PDEs). The standard reformulation of a boundary control system is adopted here to write the system under a regular infinite-dimensional linear system. A finite-dimensional boundary optimal controller is designed based on the linear quadratic technique and the corresponding operator Riccati equation. On the other hand, a Luenberger observer is designed based on the duality between the control and the estimation problems. Combination of the designed controller and observer is performed to construct a stabilizing compensator. A case study of tubular cracking chemical reactor is used to test the performances of the developed algorithm. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Controllers Distributed parameter control systems Linear systems Riccati equations Boundary control systems Distributed parameter systems Estimation problem Hyperbolic partial differential equation Infinite-dimensional linear systems Luenberger observers Optimal compensators Optimal controller Cracking (chemical) |
النوع | Article |
الصفحات | 9692-9708 |
رقم العدد | 14 |
رقم المجلد | 357 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [740 items ]