عرض بسيط للتسجيلة

المؤلفKerdjidj, Oussama
المؤلفHimeur, Yassine
المؤلفAtalla, Shadi
المؤلفCopiac, Abigail
المؤلفSohail, Shahab Saquib
المؤلفFadli, Fodil
المؤلفAmira, Abbes
المؤلفMansoor, Wathiq
المؤلفGawanmeh, Amjad
تاريخ الإتاحة2024-03-18T08:44:40Z
تاريخ النشر2023-11
اسم المنشور2023 6th International Conference on Signal Processing and Information Security, ICSPIS 2023
المعرّفhttp://dx.doi.org/10.1109/ICSPIS60075.2023.10343825
الاقتباسKerdjidj, O., Himeur, Y., Atalla, S., Copiac, A., Sohail, S. S., Fadli, F., ... & Gawanmeh, A. (2023, November). Exploring 2D Representation and Transfer Learning Techniques for People Identification in Indoor Localization. In 2023 6th International Conference on Signal Processing and Information Security (ICSPIS) (pp. 173-177). IEEE.
الترقيم الدولي الموحد للكتاب 979-835032959-9
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85182277014&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/53146
الملخصIndoor localization is a crucial aspect of various disciplines in our daily lives. It enables efficient administration tasks and improves safety by identifying the position of items or people inside spaces, making it useful for activities like interior navigation, asset tracking, people rescue, and building security. However, traditional systems have limited performance due to various phenomena. In this paper, a novel system is proposed to identify users inside a building using a transfer learning algorithm and a received signal strength indicator signal as an image. The system utilizes pre-trained models and the scalogram technique to increase the performance of localizing the converted data RSSI to an image. The results demonstrate that the two models can recognize users with 90% accuracy for GoogleNet and 86% accuracy for SqueezNet model.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوع2D conversion
Indoor localization
RSSI
Scalogram
Security
Transfer Learning
العنوانExploring 2D Representation and Transfer Learning Techniques for People Identification in Indoor Localization
النوعConference Paper
الصفحات173-177
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة