• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evidence of the drying technique’s impact on the biomass quality of Tetraselmis subcordiformis (Chlorophyceae)

    Thumbnail
    View/Open
    s13068-023-02335-x.pdf (1.762Mb)
    Date
    2023-05-20
    Author
    Aljabri, Hareb
    Cherif, Maroua
    Siddiqui, Simil Amir
    Bounnit, Touria
    Saadaoui, Imen
    Metadata
    Show full item record
    Abstract
    Rapid drying, cost-effective and safe, will increase the viability of using microalgae for several bio-industrial applications. In this study, five different drying techniques of microalgal biomass were investigated. These include freeze drying, oven drying, air drying, sun drying, and microwave drying. Morphology, metabolite content, FAME profiling, chlorophyll content, total organic carbon, and total nitrogen were analyzed. Results showed that the freeze-drying technique preserves the highest amounts of chlorophyll, proteins, and lipids. Oven drying underperformed as it retained the lowest amount of chlorophyll, protein, and lipid content. More importantly, FAME profiling results showed that air drying was the best technique in maintaining the highest amount of polyunsaturated fatty acids and more specifically docosahexaenoic acid (DHA). Furthermore, this process requires the least capital and energy needs. The findings from this study confirmed that the drying technique affects the microalga biomass quality. Graphical Abstract: [Figure not available: see fulltext.]
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85160012757&origin=inward
    DOI/handle
    http://dx.doi.org/10.1186/s13068-023-02335-x
    http://hdl.handle.net/10576/53718
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Center for Sustainable Development Research [‎338‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video