عرض بسيط للتسجيلة

المؤلفLiu, X.
المؤلفMalki, A.
المؤلفCao, Y.
المؤلفLi, Y.
المؤلفQian, Y.
المؤلفWang, X.
المؤلفChen, X.
تاريخ الإتاحة2024-03-31T04:23:36Z
تاريخ النشر2015-05-26
اسم المنشورExperimental and Clinical Endocrinology and Diabetes
المعرّفhttp://dx.doi.org/10.1055/s-0035-1548789
الاقتباسLiu, X., Malki, A., Cao, Y., Li, Y., Qian, Y., Wang, X., & Chen, X. (2015). Glucose-and Triglyceride-lowering Dietary Penta-O-galloyl--D-Glucose Reduces Expression of PPAR and C/EBP, Induces p21-Mediated G1 Phase Cell Cycle Arrest, and Inhibits Adipogenesis in 3T3-L1 Preadipocytes. Experimental and Clinical Endocrinology & Diabetes, 123(5), 308-316.
الرقم المعياري الدولي للكتاب0947-7349
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84930212703&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/53729
الملخصPlant polyphenols, such as hydrolysable tannins, are present in the human diet and known to exhibit anti-diabetic and anti-obesity activity. We previously reported that the representative hydrolysable tannin compound α-penta-galloyl-glucose (α-PGG) is a small molecule insulin mimetic that, like insulin, binds to insulin receptor (IR) and activates the IR-Akt-GLUT4 signaling pathway to trigger glucose transport and reduce blood glucose levels in db/db and ob/ob diabetic mice. However, its effects on adipogenesis and lipid metabolism were not known. In this study, high fat diet (HFD)-induced diabetic and obese mice were treated with α-PGG to determine its effects on blood glucose and triglycerides. 3T3-L1 preadipocytes were used as a cell model for identifying the anti-adipogenic activity of α-PGG at molecular and cellular levels as a first step in elucidating the mechanism of action of the compound. In vivo, oral administration of α-PGG significantly reduced levels of blood glucose, triglyceride, and insulin in HFD-induced diabetic/obese mice (P<0.05). In vitro, α-PGG inhibited the differentiation of 3T3-L1 preadipocytes into mature adipocytes. α-PGG suppressed the expression of positive adipogenic factors PPARγ C/EBPα and mTOR and augmented the negative adipogenic factor Pref-1. Furthermore, α-PGG induced upregulation of p21 and G1 phase cell cycle arrest. In contrast, adipogenic signaling pathways mediated by insulin, the cAMP response element binding protein (CREB) and glucocorticoid receptor (GR), were not inhibited. RNAi knockdown of p21 led to a 4-fold increase in triglyceride level in 3T3-L1 preadipocytes treated with MDI and α-PGG compared to regular preadipocytes. These results indicate, for the first time, that α-PGG is blood triglyceride- and glucose-lowering in HFD-induced obese and diabetic mice. It selectively inhibited some but not all major adipogenic pathways as well as the mTOR-p21-mediated cell cycle regulatory pathway. It is very likely that these apparently diverse but coordinated activities together inhibited adipogenesis. These results expand our knowledge on how PGG works in adipocytes and further confirm that α-PGG functions as an orally-deliverable natural insulin mimetic with adipogenetic modulatory functions.
راعي المشروع- National Science Foundation - grant No. [IIP-0227907].
اللغةen
الناشرThieme
الموضوعhydrolyzable tannins
insulin mimetic
nutritional sciences
obesity
type 2 diabetes mellitus
العنوانGlucose- and triglyceride-lowering dietary penta-O-galloyl-α-D-glucose reduces expression of PPARγ and C/EBPα, induces p21-Mediated G1 phase cell cycle arrest, and inhibits adipogenesis in 3T3-L1 preadipocytes
النوعArticle
الصفحات308-316
رقم العدد5
رقم المجلد123
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة