عرض بسيط للتسجيلة

المؤلفElnour, Mariam
المؤلفNoorizadeh, Mohammad
المؤلفShakerpour, Mohammad
المؤلفMeskin, Nader
المؤلفKhan, Khaled
المؤلفJain, Raj
تاريخ الإتاحة2024-04-02T06:04:48Z
تاريخ النشر2023
اسم المنشورIEEE Access
المصدرScopus
الرقم المعياري الدولي للكتاب21693536
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ACCESS.2023.3303015
معرّف المصادر الموحدhttp://hdl.handle.net/10576/53781
الملخصIn light of the advancement of the technologies used in industrial control systems, securing their operation has become crucial, primarily since their activity is consistently associated with integral elements related to the environment, the safety and health of people, the economy, and many others. This work presents a distributed, machine learning based attack detection and mitigation framework for sensor false data injection cyber-physical attacks in industrial control systems. It is developed using the system's standard operational data and validated using a hybrid testbed of a reverse osmosis plant. A MATLAB/Simulink-based simulation model of the process validated with actual data from a local plant is used. The control system is implemented using Siemens S7-1200 programmable logic controllers with 200SP Distributed Input/Output modules. The proposed solution can be adopted in the existing industrial control systems and demonstrated effective performance in real-time detection and mitigation of actual cyber-physical attacks launched by compromising the communication links between the process and the programmable logic controllers.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAttack detection
attack mitigation
false data injection (FDI)
industrial control system (ICS)
support vector machine (SVM)
العنوانA Machine Learning Based Framework for Real-Time Detection and Mitigation of Sensor False Data Injection Cyber-Physical Attacks in Industrial Control Systems
النوعArticle
الصفحات86977-86998
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة