• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards robust autonomous driving systems through adversarial test set generation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Towards robust autonomous driving systems through adversarial test set generation.pdf (1.665Mb)
    Date
    2023-01-01
    Author
    Unal, Devrim
    Catak, Ferhat Ozgur
    Houkan, Mohammad Talal
    Mudassir, Mohammed
    Hammoudeh, Mohammad
    Metadata
    Show full item record
    Abstract
    Correct environmental perception of objects on the road is vital for the safety of autonomous driving. Making appropriate decisions by the autonomous driving algorithm could be hindered by data perturbations and more recently, by adversarial attacks. We propose an adversarial test input generation approach based on uncertainty to make the machine learning (ML) model more robust against data perturbations and adversarial attacks. Adversarial attacks and uncertain inputs can affect the ML model's performance, which can have severe consequences such as the misclassification of objects on the road by autonomous vehicles, leading to incorrect decision-making. We show that we can obtain more robust ML models for autonomous driving by making a dataset that includes highly-uncertain adversarial test inputs during the re-training phase. We demonstrate an improvement in the accuracy of the robust model by more than 12%, with a notable drop in the uncertainty of the decisions returned by the model. We believe our approach will assist in further developing risk-aware autonomous systems.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142727361&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.isatra.2022.11.007
    http://hdl.handle.net/10576/53927
    Collections
    • Interdisciplinary & Smart Design [‎32‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video