• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Security concerns on machine learning solutions for 6G networks in mmWave beam prediction

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    Security concerns on machine learning solutions for 6G networks in mmWave beam prediction.pdf (1.963Mb)
    التاريخ
    2022-06-01
    المؤلف
    Catak, Ferhat Ozgur
    Kuzlu, Murat
    Catak, Evren
    Cali, Umit
    Unal, Devrim
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    6G – sixth generation – is the latest cellular technology currently under development for wireless communication systems. In recent years, machine learning (ML) algorithms have been applied widely in various fields, such as healthcare, transportation, energy, autonomous cars, and many more. Those algorithms have also been used in communication technologies to improve the system performance in terms of frequency spectrum usage, latency, and security. With the rapid developments of ML techniques, especially deep learning (DL), it is critical to consider the security concern when applying the algorithms. While ML algorithms offer significant advantages for 6G networks, security concerns on artificial intelligence (AI) models are typically ignored by the scientific community so far. However, security is also a vital part of AI algorithms because attackers can poison the AI model itself. This paper proposes a mitigation method for adversarial attacks against proposed 6G ML models for the millimeter-wave (mmWave) beam prediction using adversarial training. The main idea behind generating adversarial attacks against ML models is to produce faulty results by manipulating trained DL models for 6G applications for mmWave beam prediction. We also present a proposed adversarial learning mitigation method's performance for 6G security in mmWave beam prediction application a fast gradient sign method attack. The results show that the defended model under attack's mean square errors (i.e., the prediction accuracy) are very close to the undefended model without attack.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124100964&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.phycom.2022.101626
    http://hdl.handle.net/10576/53947
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video