عرض بسيط للتسجيلة

المؤلفBehzad, Vaferi
المؤلفDehbashi, Mohsen
المؤلفKhandakar, Amith
المؤلفAyari, Mohamed Arselene
المؤلفAmini, Samira
تاريخ الإتاحة2024-04-22T07:57:22Z
تاريخ النشر2024-02-09
اسم المنشورSustainable Materials and Technologies
المعرّفhttp://dx.doi.org/10.1016/j.susmat.2024.e00863
الاقتباسVaferi, B., Dehbashi, M., Khandakar, A., Ayari, M. A., & Amini, S. (2024). Development of a stacked machine learning model to compute the capability of ZnO-based sensors for hydrogen detection. Sustainable Materials and Technologies, e00863.
الرقم المعياري الدولي للكتاب2214-9937
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2214993724000435
معرّف المصادر الموحدhttp://hdl.handle.net/10576/54035
الملخصZinc oxide (ZnO) nanocomposite sensors decorated with various dopants are popular tools for detecting even low hydrogen (H2) concentrations. The nanocomposite's chemistry, temperature, and H2 concentration impact the success of hydrogen sensors. Extensive laboratory-scale studies were conducted to investigate the effect of these variables on sensor performance, there is currently no model to relate the nanocomposite's sensitivity to its influential variables. This study proposes a stacked model by integrating Extra tree and XGBoost (eXtreme Gradient Boosting) regressor to precisely relate the sensitivity of the ZnO-based sensor to the nanocomposite's chemistry, H2 concentration, and temperature. The model's accuracy is superior to that of conventional artificial neural networks, achieving outstanding prediction results with mean absolute error (MAE) = 0.11, mean squared error (MSE) = 0.31, mean absolute percentage error (MAPE) = 1.14%, and R-squared (R2) = 0.9994 based on 208 actual sensor sensitivities. Also, the designed stacked model predicts 206 experimental records with relative error ranges from −4% to 8%. Applicability domain analysis confirms the validity of almost all experimental measurements (200 out of 208 records). Trend and relevancy analyses indicated that the sensor sensitivity intensifies with increasing hydrogen concentration and decreasing temperature. The reduced graphene oxide (rGO) dose initially improves sensor sensitivity toward hydrogen detection up to a maximum value and then continuously decreases it. The analysis of variance approves that the ZnO-Co3O4 sensor has the maximum value of least squares average = 42.3 for hydrogen detection over its experimental conditions. This study provides valuable insights for designing efficient ZnO-based sensors for hydrogen detection, ultimately contributing to safe hydrogen transportation/utilization.
اللغةen
الناشرElsevier
الموضوعHydrogen utilization safety
Nanocomposite sensor
Zinc oxide
Machine learning
Stacked approach
العنوانDevelopment of a stacked machine learning model to compute the capability of ZnO-based sensors for hydrogen detection
النوعArticle
رقم المجلد39
ESSN2214-9937
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة