عرض بسيط للتسجيلة

المؤلفAl-Maadeed, Temadher Alassiry
المؤلفHussain, Iqtadar
المؤلفAnees, Amir
المؤلفMustafa, Muhammad Tahir
تاريخ الإتاحة2024-05-02T11:19:26Z
تاريخ النشر2021
اسم المنشورMultimedia Tools and Applications
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/s11042-021-10695-5
الرقم المعياري الدولي للكتاب13807501
معرّف المصادر الموحدhttp://hdl.handle.net/10576/54551
الملخصWe have proposed a robust, secure and efficient image encryption algorithm based on chaotic maps and algebraic structure. Nowadays, the chaotic cryptosystems gained more attention due to their efficiency, the assurance of robustness and high sensitivity corresponding to initial conditions. In literature, there are many encryption algorithms that can simply guarantees security while the schemes based on chaotic systems only promises the uncertainty, both of them can not encounter the needs of current scenario. To tackle this issue, this article proposed an image encryption algorithm based on Lorenz chaotic system and primitive irreducible polynomial substitution box. First, we have proposed 16 different S-boxes based on projective general linear group and 16 primitive irreducible polynomials of Galois field of order 256, and then utilized these S-boxes with combination of chaotic map in image encryption scheme. Three chaotic sequences can be produced by the disturbed of Lorenz chaotic system corresponding to variables x, y and z. We have constructed a new pseudo random chaotic sequence ki based on x, y and z. The plain image is encrypted by the use of chaotic sequence ki and XOR operation to get a ciphered image. To show the strength of presented image encryption, some renowned analyses are performed.
اللغةen
الناشرSpringer
الموضوعChaos
Cryptanalysis
Image encryption
Lorenz System
Substitution box
العنوانA image encryption algorithm based on chaotic Lorenz system and novel primitive polynomial S-boxes
النوعArticle
الصفحات24801-24822
رقم العدد16
رقم المجلد80
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة