• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications

    Thumbnail
    Date
    2021
    Author
    Venkatesan, Jayachandran
    Anil, Sukumaran
    Metadata
    Show full item record
    Abstract
    Utilization of bone graft substitutes have increased due to the rising number of accidents, trauma, and aging population. Autograft is still considered as a gold standard for treating bone defects. However, limitations such as insufficient donor sites and secondary surgery, leads to the development of alternative grafts. Hydroxyapatite (HA) from natural resources gained much attention in recent years as a bone graft substitute due to its biocompatibility, excellent osteointegration, osteoconductive, and osteoinductive properties. In the current review, we have presented the isolation procedures of HA from marine fishbone and cuttlefish bone. Further, composite preparation using marine derived HA with other polymeric and ceramic materials were discussed, and cell-materials interaction were reviewed in detail towards bone tissue construction. Composite biomaterials with HA showed better cell proliferation, cell adhesion, increased gene expression (collagen, osteocalcin, osteopontin, bone sialoprotein, BMP-2 etc.), and in vivo studies demonstrated significant bone formation with HA composite materials. Hence, composite biomaterials with hydroxyapatite will be potential candidates for artificial synthetic bone graft substitute.
    DOI/handle
    http://dx.doi.org/10.1007/s12257-020-0359-0
    http://hdl.handle.net/10576/54558
    Collections
    • Dental Medicine Research [‎410‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video