• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dataset of usage pattern and energy analysis of an Internet of Things-enabled ceiling fan

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352340923000185-main.pdf (939.5Kb)
    التاريخ
    2023
    المؤلف
    Khan, Hashim Raza
    Khalid, Muhammad Hashir bin
    Alam, Urooj
    Atiq, Mahnoor
    Qidwai, Uvais
    Qazi, Saad Ahmed
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Many electrical appliances have progressed from sheer prototypes to viable products by being automated with the help of sensors and Internet of Things (IoT). In this data driven century, there aren't many data-centric solutions for the effective use of residential and commercial ceiling fans. For the said reason, sensors were installed on a remote-controlled BLDC ceiling fan, and a large amount of user data with environmental indicators such as temperature and humidity, was collected. This data along with the fan speed was logged to a cloud server over Wi-Fi using a Wi-Fi enabled microcontroller. The raw data consists of timestamp, temperature, humidity, and fan speed. The data is logged depending on the change of any parameter rather than a specific interval. The logged data is then visualized on the cloud server to monitor the usage patterns of the appliance and its subsequent energy consumption. The dataset is comprised of the fan data from the bedroom, living room, and lounge obtained by the resident's consent. This data is useful for data scientists, environmentalists, fan manufacturers, architects, social scientists, and several other field enthusiasts. The data can be analyzed based on monthly average temperature and humidity energy consumed, operational time per day or month and monthly/weekly summary of usage. Furthermore, by applying Artificial Intelligence (AI) algorithms on such data, it is feasible to extract patterns that indicate the appliance usage and identify changes in the daily routine. Many machine learning techniques can be applied on the dataset to introduce intelligent control of the appliance for adaptable operation without compromising on the comfort level of the user.
    DOI/handle
    http://dx.doi.org/10.1016/j.dib.2023.108900
    http://hdl.handle.net/10576/54654
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video